AD-A082 985

UNCLASSIFIED

w3

an
AoR:ous

IIT RESEARCH INST CHICAG0 IL F/8 9/2
A REVIEW OF SOFTWARE MAINTENANCE TECHNOLOBY. (U}
FES B0 J D DONAHOO. D R SWEARINGEN F30602'7B-C-0255

RADC =TR-80=13

O MEIATY V

v 1"
.,

X90TONHIE T HONVNELNT VN TEVALI0S o

ADAO8B2985

£ FILE COPY,

3]

b0

RADC-TR-80-13
interim Report
February 1980

A REVIEW OF SOFTWARE
MAINTENANCE TECHNOLOGY

ITT Research Institute

John D. Donahoo
Dorothy Swearingen

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIM“ED]

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344I

. e et b

B e
- - el s ..

o v
LI

-

a

Wi s

A ame

- -
-

et S T

S

L R T

i

-

——

-y
B Wy SUSILNP) YF SN W P

A

This report has been reviewed by the RADC Public Affairs Office (PA)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

RADC-TR-80-13 has been reviewed and is approved for publication.

JOHN PALAIMO
Project Engineer

APPROVED: Vg %mwv\)

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: (7/24Z A j e 2 Q.

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (ISIS), Griffiss AFB NY 13441, This will assist
us in maintaining a current mailing 1list.

Do not return this copy. Retain or destroy.

ae

il miacahY

v gy v —
a

AL

v

- Yv
L A

D st W"‘:‘."""{"."w“' "
M +

K

¢l
1
K
b
.

Fa

.

Y

UNCLASSIFIED
SECURIJPONASSIFICATION OF THIS PAGE (When Dats Entored)

REPORT DOCUMENTATION PAGE BEF o TR NS R

2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

EIETR == o A SO 7= - RIOC COVERED
A EEVIEW OF‘§0FTWARE_yAINTENANCE TECHNOLOGY. q Interim Kepext -
o - - = Mar, = Novembwr 79

N/A

s — e

-] v NUMBER(s)
Jobn D Donahoo | . e | [F90602- 780255
Dorothy /Swearingex) B
CW
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT N

IIT Research Institute /
10 West 3rd Street gi;gBF
Chicago IL 60616 :jw

11. CONTROLLING OFFICE NAME AND ADDRESS . g N
Rome Air Development Center (ISIS) (/ | Fe"—‘sg /

Griffiss AFB NY 13441 " NUMB

221
T4 MONITORING AGENCY NAME & ADORESS(If different from Controlling Oitice) 15. SECURITY CLASS. (of thia teport)
Same

UNCLASSIFIEQ

/ T5a DECL ASSIFICATION DOWNGRADING |
HEDUL
o,‘l N/A

'6. DISTRIBUTION STATEMENT (of this Negous” T

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: John Palaimo (ISIS)

This work was performed under a subcontract by Computer Sciences Corporationm,
6022 Technology Drive, Huntsville, AL 35807.

19 XEY WORDS (Continue on reverse gide if necessary and identify by block number;

Sof tware Maintenance Sof tware Failures
Software Maintenance Tools Sof tware Testing
Sof tware Maintenance Techniques Sof tware Modification

Software Life Cycle Management
Foftware Verification and Validation

ABSTRACY (Continue on n\'er"_ndc I necessary and identify by block number)
The purpose of this effort was to develop a comprehensive statement about soft-

ware maintenance techniques and tools in use today. This report focuses on softf
ware maintenance technology as it is described and defined in open literature
and technical reports. Material was selected based on its relevance to the
subject of software maintenance and date it was published. Generally, only
papers and articles published since 1974 and reports and books published since

1975 were selected.ﬂx\

LA |
DD 28", 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE 1“7'"1"1. Entered)
/

175350 ——*

UNCLASSIFIED

SECURITY CLASSIFICATION OF TH{S PAGE(When Date Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

FOREWORD

This technical report presents the results of a review
of open litérature and technical reports concerning the develop-
ment and use of computer software maintenance techniques and
tools. This effort was sponsored by the Information Sciences
Division of the Rome Air Development Center (RADC) under contract
number F30602-78-C-0255. J. Palaimo of RADC was the Project Engi-
neer. Review research activities were managed by the RADC Data
and Analysis Center for Software (DACS) in conjunction with
its software engineering research program.

Approved by Supv(ijd by
\ ~®G v\c--.Q\X

Lorraine Duvall Johh D. Donahoo
DACS Program Manager Computer Sciences Corporation

IIT Research Institute

DorothyZSwearingen
Computer Sciences Corporation

old

ITRES A SA A 0

= L :

Awailund/ox
?uscial

iii

'-u-n--—w—-—-“'-"'—"“"*—"'""“"“"""""""":f »

EXECUTIVE SUMMARY

At the present time computer software maintenance is re-
ceiving a great deal of attention; from data processing managers
who see more and more of their resources committed to the ‘support
of operational software, from programmers and analysts who find ,
themselves responsible for increasing volumes of program code,
and from users who demand improved performance, expanded capa-
bilities, and new products from existing systems. As an out-
growth of that attention the published literature is filled with

i
t
3
{
:

reports and discussions of software maintenance related topics.
There are new maintenance support systems, both automated and
manual and expanded applications for the established technology.
New software maintenance concepts and approaches are being pre-
sented. This report offers some insight into the wealth of infor-
mation on these topics that exists in current articles, papers,
reports,\and books. No attempt has been made to evaluate the
techniques and tools described in this report. They are presented
through the medium of summary descriptions in a common format

and they are correlated with maintenance activities using a cor-
relation matrix. The set of techniques and tools described in
this report is by no means complete. However, it is represen-
tative of software maintenance technology as it exists today.
These techniques and tools have been selected because they are
typical of applied concepts and approaches, and because they

have been adequately documented or described in open literature.

A significant deficiency that exists in all the literature
reviewed for this report is a lack of definitive information
about technology performance in a maintenance environment. How
well do these techniques and tools support maintenance of opera-
tional software systems? The technology is usually described
statically in terms of attributes and processes. 1If application
is discussed the information is typically general in nature with
no specific reference to performance or effectiveness. This
one aspect of software maintenance technology literature appears
to be worthy of more attention and research.

ﬂ PRECADING PAGE BLANK - NOT FLLAED,

e R

CONTENTS

Section Page
1 INTRODUCTION ..iciveeeecceencsonvsasscnsosnsssos 1-1
1.1 Review Background/PUrpoSeeceesvescs 1-1

l.2 ReVieW SCOPE R R R EEREEE R E R e e 1-3

1.3 Report Content ® ® 8 % & 0 08 S 06 G 00 L e e Nt s o0t 1"4

II SOFTWARE MAINTENANCE OVERVIEW .c.ccccevsconcsse 2-1
2.1 Life CYCle Maintenaﬂce 0 6 0 640 8 e e 800 a0 2-1
2.2 Maintenance Engineeringcceceveeceas 2-8

2.3 Administering Maintenancecic00.. 2-10

2.4 Maintainable Software ...c...veccececeons 2-17
111 SOFTWARE MAINTENANCE TECHNOLOGY ..ccccvcccons 3-1
3.1 Maintenance Functionsceeeeveeece 3-1

3.2 Maintenance ActivitiesS ..ceceserscncccne 3-2
3.3 Technology/Activity Matrixeeeveeaas 3-4

Iv MAINTENANCE TOOLS AND TECHNIQUES ...ccecveeaes 4-1

4.1 Tools/Techniques Applications

Matrix ® 6 6 06 0 8 5 65 8 ¢ % g9 8 00T E S80S G e eSO TE S 4_1

4,2 Tool/Technigues Descriptions 4-11

v TECHNOLOGY REVIEW ASSESSMENT ...eveecoccocses 5-1
5.1 Maintenance State-of-the-Artcce. 5-1
5.2 Maintenance Research Directions 5-8

VI REFERENCES LRI R R R N I R R R R S S N N I I B B B RN 6-1
VII BIBLIOGRAPHY © 8 0 8 3 0 00 080 006800608 e G0 E LB e EE 7_1
APPENDIX"'GLOSSARY 5 % 2 0 0080 00 00 6 588000 s N SEG eSS SN A-l

me‘\w e ,L ,..\‘ Vot T

| rrECEDING BLANK
) ECEOLNG PAGE = NOT FLLuD|
vil '

Figure

3-2

4-1

Table

2-1

LIST OF ILLUSTRATIONS

Functions - Activities Hierarchycceveeesve

Maintenance Technology/Activity Correlation

Mat[ix © 5 0 8 8 0% 9 C 0 000G T L0000 0000000 Nssee

Maintenance Tools & Techniques Applications

Matrix ® 0 8 0 0 00 0 0GP0 PO L0 LELLLsEOEPEBOLOSOCTE

LIST OF TABLES

Summary - Bases of Software Maintenance

Software Maintenance/Modification Required
Capabilities ...cieeeeseenecacntsccasesnannnas

viii

Page
2-7

2-9

[y e TP E

SO R s

€

L A

Diadsl Tabity

<

2T o PRI Ny T TR o I, r T

P T

EERE

T ambrir CmVIY 7F il s

T A 4

e

l‘
}
]

SECTION I
INTRODUCT ION

1.1 REVIEW BACKGROUND/PURPOSE

The data processing community is now experiencing the effects
of being associated with a maturing industry. The effects are
more pronounced for the hardware segment of the industry and have
been examined and reported in some detail. Identification and
definition of these effects for the software segment is relatively
tentative now, but an awareness of their presence is reflected in
experiences and concerns described in many of the papers, reports,
and articles reviewed in preparing this report. These experiences
and concerns are conveyed through discussion of such diverse sub-
iects as life cycle management and technological challenge, data
processing terminology, software maintenance management and tech-
nology, computer program development, and others. 1In these docu-
ments the writers quite often cite the lack of a structured and
universally applicable discipline for implementing and managing
sof tware across its life cycle, as a significant impediment to
achieving full potential of that software. Their statements
reflect a growing frustration with the fundamental problems
facing the entire data processing industry today. Ore of those
problems involves an ever increasing body of expensive and com-
plex operational software that must be maintained in a viable
state.

This report focuses on software maintenance technology as
it is described and defined in open literature and technical
reports. No attempt has been made to define a software manage-
ment or maintenance discipline. That would have been far beyond
the scope of this project. The purpose in conducting the tech-
nology review was to develop a comprehensive statement about
the maintenance techniques and tools in use today and to describe
how they support the activities associated with computer software
maintenance. The computer program maintenance environment was

1-1

P ST TR D arT e

also examined and is described through discussion of topics re-
lated to implementation of software maintenance technology. It
is hoped that this report might foster further research into
software maintenance principles and ultimately lead to definition
of a software engineering discipline encompassing all aspects of
computer program development and maintenance.

One realization that comes early to anyone reviewing the
literature of data processing is that the terminology is not con-
sistent. It is, no doubt, simply another symptom of the rapid
development and cuanges that are occuring in this industry. The
lanquage of data processing has not been given an opportunity to
"catch its breath"” as the technology continues its accelerating
advances. For that reason, each writer must carefully define the
key terms and phrases which he uses in developing his technical
presentation. During the review of literature and reports for
this report certain terms and phrases were common to the discus-
sions of maintenance technology. In most cases definitions were
given or meanings were obvious from the context. The most prom-
inent of those terms and phrases are shown below, along with brief
discussions of their usage and the definitions applied for this
report. A complete glossary of terms to be found in this report
are presented in Appendix A.

) Software (Computer Program) Maintenance. Some writers
have expressed reservations about using the term main-
tenance with respect to computer programs. Among the
reasons given is the concept that programs don't fail
the way hardware fails (References 1 and 2). That
is, software "parts" don't deteriorate or break, but
functional failures occur because of existing states
of the programs. Therefore, maintaining software is
really only a changing or modifying process. Also
the point is made that the term "maintenance" has a
less than desirable connotation for most programmers
(Reference 3). Maintaining computer programs is con-
sidered to be work at a lower skill level than program
development and is thus to be avoided. However, the
word maintenance seems to be too firmly entrenched in
the literature on this subject to be replaced now.

For this report a definition of software maintenance
was followed which is consistent with that presented

1-2

"’ -

by Boehm in his paper, Software Engineering (Refer-~

ence 4). That is, "the process of modifying existing
operational software while leaving its primary functions
intact”. 1In addition the definition is broadened to
include software enhancement or extending the capa-
bilities of the software to include new or modified
functions.

° Software Engineering. 1In the decade since its intro-
duction this term has assumed increasing significance
as the importance of structured software development
and maintenance methodologies has been established.
Yet, without a common body of techniques and tools
and standard procedures for implementing them, "soft-
ware engineers" have been engineers in name only.

The beginning of the revolution in thinking that must
occur before software can be truly engineered is
evident in literature on that subject., Researchers
are addressing the unknowns in software reliability
and maintainability, programmer productivity, program
functional modularity, etc. Software engineering is
generally defined as the body of knowledge which may be
applied to the design, construction, and modification
of computer programs (References 4, 5, and 6). That
body of knowledge is limited at the present time, but
it is rapidly being expanded.

° Software (Computer Program) Maintainability. The con-
cept of developing a capability for identifying the
level of maintainability of a computer program is fairly
new. It is an important adjunct to the creation of a
software engineering discipline which includes char-
acteristics such as reliability, portability, test-
ability, as well as maintainability. Quantitative
measurement of the maintainability factor has been
reported by at least one research team (Reference 7).
Software maintainability is defined as a measure of
the relative level of effort required to modify, update,
or enhance a computer program.

T
haas .. B

1.2 REVIEW SCOPE

ko 4l

As stated in the previous section this report does not at-
tempt to define or describe a discipline for software management A
or maintenance. The basis for this report was the technical
papers, articles, and reports that are shown in the bibliography.
The information in this document was derived from those references
in order to present a review of software maintenance technology.

Research for compilation of the reference sources was conducted
at the following facilities;

Redstone Scientific Information Center, Redstone Arsenal,
Alabama.

University of Alabama in Huntsville Library, Huntsville,
Alabama.

Data and Analysis Center for Software, Rome Air Development
Center, New York.

Syracuse University Library, Syracuse, New York.

Material was selected based on its relevance to the subject
of software maintenance and the date it was published. Generally,
only papers and articles published since 1974 were selected.

For reports and books a publication date of 1976 or later was
observed. There were exceptions for material that ‘as deemed
to be particularly relevant or unique in content.

1.3 REPORT CONTENT

The balance of this report is organized by sections as fol-
lows:

Section II puts the software or program maintenance environ-
ment in perspective with an overview of that environment. The
purpose of the overview is to provide necessary background infor-
mation for an understanding of the maintenance technology discus- F
sion. Maintenance activities are discussed 7ith respect to three

il

bases of software maintenance as defined by Swanson (Reference 8).

These bases motivate technology application, that is, corrective j
maintenance for software failures, adaptive maintenance for en- ﬁ
vironment changes and perfective maintenance for software enhance- ;
ments. Where possible the continuity of these maintenance activ- ™

iy

ities is established, from their initial implementation early in

“ e,

the life cycle through their ultimate use in support of opera-
tions and maintenance phase requirements. In addition, software E
system and program maintenance engineering across the life cycle
is discussed. These topics encompass consideration of computer

1-4

program maintenance continuity through the life cycle and specific
maintenance engineering functions. Maintenance tasks are dis-
cussed from the related viewpoints of the automated data system
manager and maintainer in administering maintenance. Finally,

the concept of developing maintainable software is explored.

Section TII discusses the technology of software maintenance
as it is practiced today. From the rescarch material a consis-
tent classification of maintenance functional requirements is com-
piled. 'The intent is to create a framework within which the tech-
niques and tool: of software maintenance can be defined. These
definitions are structured so that comparisons may be made among
similar techniques and tools, and those that are complementary
may be readily identilied. A discussion of maintenance activi-
ties in the operations and maintenance phase is included next.
Maintenance activities such as crror identification/isolation,
system/program redesign, test and integration, quality assurance,
confiquration management and others are identified. These activ-
ities are then associated with maintenance technology functions
through the use of a technology/activity correlation matrix. The
matrix qualifies each technology function by identifying its ap-
plication base in a corrective, adaptive or perfective role.

Section IV contains descriptions of maintenance techniques
and tools. Each technique or tool is discussed using a format
that includes the category and characteristics, reference sources
for the description, status of usaqe, description of the technique
or tool, rescarch findings from use and reports of actual usage in
maintenance. A tool/technique application matrix which summarizes

the characteristics of each technique and tool is shown.

Section V provides an assessment of the present state-of-
the-art in software maintenance technology. This assessment
is based on research data selected for the survey report. The
assessment leads to a presentation of goals or objectives to
be considered for further research into software maintenance
technology.

SECTION II
SOFTWARE MAINTENANCE OVERVIEW

2.1 LIFE CYCLE MAINTENANCE

The term life cycle maintenance implies that computer pro-
grams must be maintained both before and after they are released
to the user. This, of course, is true although during program

development maintenance activities are generally not referred

to as such. Not until the software is released to the user does
maintenance become a recognized support function. However, it
is useful to consider the implications of maintenance support
for computer programs from their creation to their deactivation.

The program maintenance function is created with the initial
lines of code that the programmer writes. As the program design
is translated into form and function, the software internal organi-
zation is established. That structure, the details of which
are often left to the discretion of the programmer, can directly
influence future program and system maintenance requirements,
The second line of program code written creates an implicit
requirement to analyze and perhaps modify the first. Subsequent .
lines likewise impact all previous ones. Thus, program mainte-
nance begins and the concept that the first line of code estab- }
lishes the dimensions of later maintenance operations (Refer-
ence 5) should be of interest to software developers and users

-

-

alike. . i

Accepting that a significant portion of operational main-
tenance is represented in extensions or revisions to the delivered {
software design, and that typically there are undiscovered flaws
in all software when it is declared operational, then operators
and maintenance support organizations have a big stake in the
program development process. The literature suggests that all
functions of operational maintenance are affected by the devel-
opment process which produced the software. A precise relation-
ship between factors influencing program development and subsequent

2-1

operational maintenance costs has not been established. 1If such

a relationship exists and if it can be defined, it may be possible
to control the spiraling costs of software maintenance. There

are certain elements of the program development process that

must be considered prime candidates for establishing this relation-
ship. Among these are:

) Cost. 1Is a design to cost approach being used? Can
system requirements be satisfied within program budget
or must compromises be made in design and development?

) Performance. Are performance requirements completely
and consistently specified? Can performance require-
ments be met efficiently through the design as defined?
Must design or coding integrity be sacrificed in order
to meet performance requirements?

° Schedule. Are development milestones met? Is program
coding accelerated at the expense of adequate static
analysis in order to meet production schedules? 1Is
testing concluded based on the calendar rather than
achievement of test goals?

° System Life Expectancy Forecast. How long will this
system be maintained and operated? Does its operational
life expectancy exceed the period of development by
a predictable amount of time?

) Operational Maintenance Planning. Who will maintain
the operational system — the developer, user or third
party?

® Software Documentation. 1Is it complete, accurate,

and comprehensible?

2.1.1 Life Cycle Engineering Research

Interest in establishing a more complete understanding of
software engineering as a discipline has led to close examination
of program development and maintenance. That examination has
resulted in expression of certain ideas and concepts concerning
the nature of the maintenance environment and the processes which
influence program evolution. When viewed from the perspective
of life cycle maintenance for software these concepts and ideas

© e+ ey Y

ﬁ_——v .

create a potential for significant improvement in the effective-
ness of applied software maintenance. Perhaps the most impor-
tant contribution of these theories is the insight they offer

into program creation and maintenance processes. The result is

a greater understanding of how program maintenance can be struc-
tured and implemented as a unified function. Continuing research
in this area should produce an even clearer picture of maintenance
requirements and the technology that may be applied to satisfy
them.

Illustrative of the research being done are the definition
of program evolution dynamics by Belady and Lehman (References 9
and 10), system partitioning evaluation by Uhrig (Reference 1l1),
and software performance analysis by Yau and Collofello (Refer-
ence 12).

2.1.1.1 Program Evolution Dynamics. Using a large program (0S/
360) as a research vehicle Belady and Lehman studied its evolution
after initial release. They examined data from each version or

release of the program in order to isolate and characterize the

interaction between management activities and the programming
process. These data included system size measures, module counts,
release dates, manpower and machine usage, and costs for each
release.

As expressed by Lehman (Reference 10), "The most fundamental
implication of our observations is the existence of deterministic,
measurable regularity in the life cycle of an application program
or of a software system”. That regularity is formally expressed
in the authors' three laws of Program Evolution Dynamics.

o Law of Continuing Change. A system that is used under-
goes continuing change until it is judged more cost
effective to freeze and recreate it.

® Law of Increasing Entropy. The entropy of a system

(its unstructuredness) increases with time, unless
specific work is executed to maintain or reduce it.

2-3

° Law of Statistically Smooth Growth. Growth trend
measures of global system attributes may appear to
be stochastic locally in time and space, but, statis-
tically, they are cyclically self-requlating, with
well-defined long-range trends.

In the authors' view these laws function to "direct, constrain,
control, and thereby regulate and smooth, the long-term (program)
growth and development patterns and rates".

2.1.1.2 System Partitioning Evaluation. 1In his definition of

a life cycle model for evaluation of system partitioning, Uhrig
(Reference 1ll) expresses an important concept relative to opera-
tions and maintenance phase activities. The evaluation model

is proposed as a means for quantitative comparison of alternative
system partitioning schemes. System partitioning refers to seg-
menting the system into areas of responsibility such as development,
test, operations and maintenance and growth. Evaluation measures
in the areas of cost, schedule, performance, and risk are taken
across the system life cycle to provide input data for the model.
In the words of the author, "A major feature of the model is

its recognition of three major dependencies: (1) development
productivity on the amount of coordination required among elements
(areas of responsibility), (2) test cost on the number of elements
in the test configuration, and (3) reliability and maintainability
on the manner in which technologies are distributed throughout

the system".

In his discussion of operations and maintenance dependencies
Uhrig introduces the concept of the operations and maintenance
phase as an abbreviated repetition of the preceding life cycle
phases. That is to say, maintenance activities routinely encompass
system definition, design, code, and test tasks. Thus, the opera-
tions and maintenance phase may be looked upon from the mainte-~
nance viewpoint as a microcosm of system development. As cor-
rective, adaptive or perfective maintenance is performed on the
software these component tasks are accomplished. This concept

2-4

provides fresh illumination of the software maintenance environ-
ment and perhaps a basis for new approaches to developing an
understanding of its requirements.

2.1.1.3 Software Performance Analysis. In an interim report

on their research into maintenance effects on software performance,
Yau and Collofello (Reference 12) present a maintenance technique
for predicting those effects. Maintenance changes implemented

on large, complex software systems can disturb prior states of
functional and performance equilibrium. Functional disturbances

rESEE

existing either before or after the maintenance can be dealt

with by implementing conventional techniques. Yau and Collofello
propose a specialized approach for dealing with disturbances to
the performance characteristics of a software system. They have

R ETEL PR - N

defined and analyzed "mechanisms for the propagation of perform-
ance changes, performance attributes, and critical software
sections”. From these results they have developed the maintenance
techniques. Much of the detailed information and research data
supporting development of this technique remains to be published
in a second report.

The purpose of their research is to develop a set of criteria
whick maintenance personnel may use in selecting optimum software
modifications., Obviously, maintenance personnel must consider
both functional and performance impact when implementing a repair
or update modification to software. The technique proposed in
the interim report supports determination of performance effects
of software modifications, system retest after maintenance changes
and prediction of worst-case effects of proposed changes. Ac-
cording to the authors this technique contributes to a software
engineering approach to maintenance.

This report identifies eight candidate mechanisms by which
software modifications cause performance changes to be propagated
throughout a software system. They are:

2-5

| —

° Parallel Execution. Modifications affect a module's

capability to be executed in parallel with other
modules.

° Shared Resources. Modifications disrupt timing among

modules sharing resources.

) Interprocess Communication. Modifications disrupt
timing of message transmission between modules.

° Called Modules. Modifications affect the performance

of a module that is called by other modules.

) Shared Data Structures. Modifications alter the storage

and retrieval times for data or cause saturation of
the data structure to be used by multiple modules.

® Sensitivity to the Rate of Input. Modifications change

input data rate leading to saturation and overflow
of data structures or interruptions in processing.

° Abstractions. Modifications to modules using abstrac-

tions cause "hidden" performance changes.

° Execution Priorities. Modifications disrupt the calling

sequence of modules or priority allocation.

In summary, the maintenance technique is implemented in

two phases. Phase one consists of program analysis and data
base production. Phase two is applied during the maintenance
process using data from phase one. In outline form the steps
contained in the two phases are as follows:

Phase 1

Step 1. Decompose program performance requirements
into key performance attributes.

Step 2. Determine propagation mechanisms present
in the program.

Step 3. Identify critical sections of the program.

Step 4. 1Identify performance dependency relationships.

Phase II

Step 1. 1Identify critical sections to be affected
by maintenance activity.

2-6

SN gy g

ARAIETAT e Y -

Step 2. Determine corresponding performance attributes
affected by maintenance activity.

Step 3. 1Identify all performance attributes affected
by changes to performance attributes in previous step.

Step 4. 1Identify performance requirements affected
by the maintenance activity.

2.1.2 Life Cycle Maintenance Categories

'
In his paper "The Dimensions of Maintenance", Swanson (Ref-

erence 8) presents a discussion of a new typology for application
software maintenance. He develops maintenance categories or
bases, as he calls them, in a preliminary step to development of
a candidate set of maintenance performance measures. These meas-
ures are proposed as elements of a maintenance data base to be
established. This data base is to function as a repository of
maintenance measures which will he used in research to assess

the dimensions of software maintenance. Once these dimensions
are known for any data processing environment then performance
criteria can be established and used to promote improved mainte-
nance management.

The implication of those maintenance bases to this review
of maintenance techniques and tools is that they provide a reason-
able framework within which to discuss maintenance technology
application. The bases represent a commonsense approach to
defining types of maintenance performed and they encompass the
entire spectrum of software repair activities.

A description of the bases is presented in summary form
in a table taken from the Swanson paper and shown below.

TABLE 2-1. SUMMARY - BASES OF SOFTWARE MAINTENANCE

A. CORRECTIVE

1. Processing Failure
2. Performance Failure
3. Implementation Failure

2-7

RN RN SRR T XEIPEP D SRy T ra

SO e

TABLE 2-1. SUMMARY - BASES OF SOFTWARE MAINTENANCE (CONCLUDED)

B. ADAPTIVE

1. Change in Data Environment

2. Change in Processing Environment
C. PERFECTIVE

1. Processing Inefficiency
2. Performance Enhancement
3. Maintainability

2.2 MAINTENANCE ENGINEERING

Given the definition of software engineering presented in
the introduction to this report, it might be of interest to refine
that definition to include specialized subdisciplines. Mainte-
nance engineering could be one of these subdisciplines.

The term maintenance engineering implies the existence of
an organized body of scientific and technical information that
may be applied to maintaining computer software systems. Unfor-
tunately, state-of-the-art development is such that a true soft-
ware maintenance engineering discipline does not exist. Under-
standing and general agreement within the data processing industry
on the definition of software maintenance tasks has been achieved.
A number of methodologies that may be used to improve maintenance

for a variety of specialized software systems have been documented.
Articles and papers, citing the rising volume and cost of opera-
tional maintenance for computer programs, call for recognition

and admission of the significance of operational maintenance
support today. It is apparent from a review of this literature
that concern for maintenance requirements is rising and tentative,
preliminary definition of maintenance engineering procedures

is being attempted.

One of the first steps in the process of formalizing a main-
tenance engineering discipline is developing a clear understanding
of computer program maintenance requirements. As stated earlier,

program maintenance spans the tasks of correcting execution faults,

2-8

adapting for changed environment, perfecting to improve performance,
and modifying for functional enhancement. Maintenance requirement
definitions must encompass the tasks within the context of the
computer program life cycle. Table 2-2 identifies a set of capa-
bility requirements which have been defined for embedded computer
systems maintenance (Reference 13).

TABLE 2-2. SOFTWARE MAINTENANCE/MODIFICATION REQUIRED CAPABILITIES

e PKOBLEM VERIFICATION

-REPRODUCE TROUBLE SITUATIONS

-VERIFY REPORTED SYMPTOMS

-IDENTIFY CAUSE: SOFTWARE, HARDWARE, INTERFACE
e DIAGNOSIS

-SYSTEM STATE SPECIFICATION/SEQUENCE CONTROL
-SOFTWARE/HARDWARE TEST POINTS ACCESS

-TEST DATA COLLECTION

-TEST DATA ANALYSIS

o REPROGRAMMING (NEW REQUIREMENTS OR SPECIFIC
CORRECTION)

-SOURCE CODE MODIFICATION
-0BJECT CODE GENERATION
-SYSTEM RELOAD
e BASELINE VERIFICATION/REVERIFICATION

-SCENARIO CONTROL
-DATA COLLECTION
-DATA ANALYSIS

The requirements listed in this table could be considered as appli-
cable to all classes of software systems. Stated in the broader
context of maintenance requirements this list should also include:

) Configuration Management
-Program Revisions Control
-Baseline Configurations Documentation

Formal definition of a workable maintenance engineering disci-
pline can only be achieved with identification of the technology
and procedures supporting an integrated approach to satisfying

2-9

maintenance requirements. The compilation of typical techniques
and tools along with the maintenapce activities/technology cor-
relation contained in this report provides a basis for further
research into maintenance engineering. The material in this
report will support data collection and analysis to identify
maintenance engineering functions. This research should prodice
as a minimum the following:

) A minimum set of unique techniques and tools that

satisfy maintenance requirements for all classes* of
software systems.

® Standard procedures for application of the set of
techniques and tools identified above.

) A standard set of metrics for specifying the degree
of effectiveness of maintenance engineering proce-
dures such as error removal rate, compilation ratio,
fault identification rate, etc.

® A glossary of common maintenance engineering terms.

2.3 ADMINISTERING MAINTENANCE

Application of software maintenance technology is a direct
result of joint efforts by the software system manager and main-
tainer. Each has unique functions to perform and a particular
perspective on maintenance which governs his or her approach
to the task of maintaining computer programs. Those functions
and perspectives should be complementary to assure effective
application of maintenance techniques and tools. Published 1lit-
erature on the subject of software maintenance application pre-
dominantly features examination of manager and manhagement aspects
of maintaining computer programs. Software maintainer concerns
and responsibilities have not been accorded equal attention by

*Definition of software system classes, such as data base manage-
ment, process control, operating system, etc., is a concept
that must be formalized. Class differentiation in this context
implies that there are varying maintenance requirements among
the classes.

researchers and writers. Nevertheless, both the manager and main-
tainer participate jointly in the implementation of maintenance
techniques and tools and both points of view are discussed here.

In his discussion of software management from the corporate
level point of view , Cooper (Reference 14) includes summary
descriptions of management obstacles and pitfalls. While the
obstacles and pitfalls he describes address software management
in general they are applicable to the specific concerns of main-
tenance management. The following comments focus on the special-
ized environment of software maintenance obstacles and pitfalls.

° Corporate decision makers' lack of computer related
experience. This is a direct result of the relative
newness of the entire data processing industry. For
a manager overseeing software maintenance tpis lack
of experience is often demonstrated through impatience
with system limitations and intolerance for the costs
of system enhancements,

e Hardware orientation of software management mechanisms.
Most directives and techniques for controlling the
development and maintenance of software have been adopted
from hardware engineering disciplines. Thus, quality
assurance, reliability and maintainability, and con-
figuration management procedures reflect an orientation
toward tangible products. Their translation for use
within the environment of intangible software compo-
nents has not been a completely successful one. The
manager of maintenance must judiciously apply these
controls in ways that tend to make each application
somewhat unique to the system on which they are used.

° Excessive concern for development of software with
little consideration for life cycle costs. This has
significant impact on the tasks of managing and main-
taining software after development. Computer programs
that are developed in the most expeditious, cost-effec-
tive way to meet performance standards are not neces-
sarily maintainable. Often the development project
manager must sacrifice software design features that
are conducive to program maintainability in order to 5
meet cost, schedule or performance requirements. This
leaves the user with software that is costly to _
maintain. g

° Increased software system complexity when developed
or maintained as a result of efforts to introduce state-
of-the~-art design, expand requirements as defined or
introduce assembly lanquage routines. Complexity is
not inherently bad for maintenance if introduced in
moderation and if documentation is adequate. 1In
today's data processing c¢nvironment of expanded pro-
cessing and storage capabilities there is less need
than ever before for complex designs and elegant code.
Considering the increasing costs of software devel-
opment and maintenance it makes more sense to produce
straightforward program logic and code.

® Contract "buy in" for acquisition of a software system.
This situation affects maintenance only indirectly
as a result of the effects of any cost cutting on the
part of the developer. The impact of these constraints
is similar to that described previously under excessive
concern for software development.

e Risk, cost, and reliability estimating deficiencies,
With the exception of reliability estimating these
estimation techriques do not directly influence main-
tenance management. Accurate reliability estimation
would greatly enhance the maintenance managers effec-
tiveness in allocating resources for program maintenance.

® Absence of common software development or maintenance
practices. “his places managers at all levels in the
awkward pusition of having to learn or relearn to "read"
management control data from each new system. In part,
the purpose of this report is to establish a basis for
identification of common maintenance practices.

Successfully coping with the obstacles and pitfalls of main-
tenance management requires the skilled and disciplined exercise
of management controls at all levels. Software maintenance manage-
ment has in the past been a "seat of the pants" operation with
on the job training as the primary learning medium. This is
beginning to change as more research is conducted and greater
understanding of the dynamics of the management environment is
achieved.

The software maintenance manager does have a growing body
of information and technology available to aid in directing and
controlling maintenance tasks. Unfortunately, because general
awareness of the significance of maintenance is coming late to

2-12

the data processing industry there are no standards established

for maintenance management. Technology and concepts must be
examined and evaluated on an individual basis. Consequently,

it is still necessary for a manager to piece together any manage-
ment program to be implemented based on professional experience
and understanding of system requirements. One writer has pro-
posed a set of broadly defined management tools for the software
maintenance activity (Reference 13). These tools, encompassing
all types of software maintenance, offer a framework for struc-

turing a maintenance management program:

e A comprehensive system/software trouble reporting
system.
] A complementary set of software-oriented test pro-

cedures for operating command use.

e A mechanism for controlling and tracking operational
program revisions.

o A Software Configuration Control Board (SCCB) to re-
view and authorize changes.

Data collected through an industry wide survey of managers
of systems and programming departments has provided new insight
into the problems associated with application software maintenance
(Reference 15). 1In evaluating the maintenance function most
respondents characterized maintenance as being more important
than new system development. Also, when those surveyed were
asked to rank problem areas of maintenance, the majority indi-
cated that user requests for system enhancements and extensions
comprised the most significant problem area. Thus, maintenance
is perceived to be a software manager's most important responsi-
bility and evolutionary modifications appear to dominate other

maintenance activities.

What about the software maintainer? Does he or she view
maintenance as an important or challenging task? Unfortunately,

the maintainer has received scant attention by researchers and

writers. There is reason to believe, however, that program main-
tenance personnel typically do not consider their status or their

assigned tasks in a very favorable light. Gundeman {(Reference

16) states that, "Traditionally, program maintenance has been
viewed as a second-class activity, with an admixture of on-the-job
training for beginners and of low status assignments for the out-

casts and the fallen", If this is a common perception of program

maintenance work 1t is not difficult to understand why it would

be shunned by most programmers.

A number of suggestions have been offered that relate to im-
proving maintenance programmer motivation and the environment of
maintenance programming. One of the most straightforward involves
cxchanging the term maintenance for production, creating "produc-
tion programming” (Reference 3). As the writer points out this
removes the connotation of unskilled labor that is attached to
maintenance and provides a link to the concept of an engineering
discipline, as in software enqgineering, of which production pro-
gramming would be a part. Of course, it would be very difficult
to implement a change such as this throughout the data processing
industry. However, it is certainly worth considering. Another

idea presented concerns developing a set of inteqgrated maintenance

procedures and a comprehensive supporting technology for the main-

tenance statf (Reference 14) . These procedures and technology ¥
are to be gystem oriented and must be defined and in place before .
a software system enters the operations and maintenance phase. 4

It this is done the costly and time consuming "ad hoc" approach
to program maintenance ¢can be avoided. The information contained
in Sections T11 and 1V of this report is offered as an initial b
step in creating this planned maintenance approach. Finally,
the concept of maintainable software has been presented as an]
approach to improving the program maintenance environment. 1§

computer programs can be designed with at least some consider-

ation being given to those characteristics that promote their

maintainability then the maintenance (production) programmer's

job satistaction will undoubtedly improve.

2-14

_ —

In his discussion of major aspects of software management,
Daly (Reference 17) develops an approach to managing software
development that results in early introduction of the maintenance
programmer to any new software. During the testing phase, prior
to acceptance, new or modified computer program operation is
verified by both the chief programmer (responsible for develop-
ment) and the maintenance programmer (responsible for maintenance
after acceptance). The chief and maintenance programmers are
responsible for integration test planning and each reports on
testing progress to their respective line superiors. This pro-
vides an important cross-check on testing performance. In addi-
tion the maintenance programmer is responsible for assuring that
both the program code and documentation meet established standards
prior to acceptance. Later, a system test will be conducted
by a team composed of chief and maintenance programmgrs to check
the interoperation of all subsystems with the new software.
Early involvement by the maintenance staff produces timely program
performance feedback to the design staff which facilitates the

software transition from development to operational status.

Assessing the psychological complexity of understanding
and modifying computer programs (one measure of the level of
difficulty experienced by a software maintainer) was the goal
of research conducted by Curtis, et al (Reference 18). 1In the
study, Halstead and McCabe complexity measures and program length
were used as basis for correlation of test data from two experi-
ments using a group of professional programmers as test subjects.
In one experiment the subjects were asked to reconstruct a func-
tional equivalent for each of three programs from memory with
timed periods for study and reconstruction of each. The second
exper iment involved completion of a specified program modification
by each subject with no time limitation for completion. The

study results suggest that program length and McCabe's complexity

- d

P————_-—_-"

measure may be used to predict the level of difficulty in achieving
program understanding. As reported by the researchers, "All

three metrics (Halstead, McCabe, and program length) correlated
with both the accuracy of the modification (in experiment 2)

and the time to completion. Relationships in both experiments
occurred primarily in unstructured rather than structured code,

and in code with no comments. The metrics were also most predic-
tive of performance for less experienced programmers. Thus,

these metrics appear to assess psychological complexity primarily

where programming practices do not provide assistance in under-
standing the code".

Finally, instituting a policy of scheduled maintenance gives
a more structured environment in which to work. Scheduled main-
tenance complements system version production control in that all
system modifications, enhancements and corrections, are imple-
mented in batches on a scheduled basis. Of course, emergency
maintenance is still performed on a priority basis, but routine
changes are introduced according to a schedule. Lindhorst
(Reference 19) cites several benefits to be derived from this
approach:

) Consolidation of requests. Some efficiency can be
achieved because multiple changes to the same program
or module can be combined under one maintenance task.

® Programmer job enrichment. The maintenance schedule
should provide an opportunity for selective programmer
upgrade training or career broadening assignments.

° Forces user department to think more about the changes
they are requesting. Delayed implementation of new
capabilities will tend to filter out those changes
that will be short lived, unimportant or both.

° Periodic application evaluation. Scheduled changes
provide convenient milestones for consideration of
the cost effectiveness of continuing the current system.
° Elimination of the "squeaky wheel syndrome". When

users realize that change requests all receive equal
consideration and implementation of the changes is

2-16

' ..‘.“,w . :

on a planned basis, there is less cause for attempting
to pressure the maintenance staff.

[Programmer back-up. The maintenance staff manager
has more latitude in assigning his personnel to tasks
and can conduct crosstraining within the maintenance
teams.

® Better planning. Long and short range staff planning
can be more effectively accomplished when the workload
can be predicted with a reasonable degree of accuracy.

® Data processing change requests are regarded as being
as important as user requests. Under this type system
it is possible to give both user and change reguests
fair consideration when planning for the next scheduled
maintenance period.

There are shortcomings and problems with instituting scheduled
maintenance. First, the concept must be approved and backed
by senior menagement. Without this support adherence to the
policy of planned implementation of data processing updates and
changes cannot be enforced. Additionally, the changeover from
0ld maintenance policies to scheduled maintenance can be traumatic

for the organization.

2.4 MAINTAINABLE SOFTWARE

Computer programs may be designed and coded so that it
is relatively easy to isolate and correct errors or to satisfy
new requirements. Such software is said to have a high degree
of maintainability. To be useful as a specification criterion
the characteristic of maintainability should be quantifiable and
measurable. By developing maintainability measures or metrics
that can be applied to all computer programs a capability for
establishing maintainability standards exists. These stan-
dards couléd be specified for any software system before it
is acquired. Not only could they be specified, but as measur-
able standards they could be enforced. When applied, the con-
cept of "designing in" software maintainability should result
in decreasing software maintenance costs. There are a number
of systems being developed or in use that can be applied

2-17

during software design to promote maintainability in the resultant
computer programs. Among these are the following systems:
°® ISDOS - a computer aided technique for requirements

analysis which employs the Problem Statement Language
and Problem Statement Analyzer

o R-Nets - a technique for organizing software pro-
cessing paths

° HOS - an axiomatic approach to definition of a soft-
ware system

) FACT - a diagramatic method for functional definition
of software operational structure

°® DECA - a technique for organizing, validating, and
portraying the design of a software system

° SADT - a vehicle for structuring and documenting the

software development process.

Development of maintainable software is considered a realistic
and achievable goal. One aspect of research into attaining that
goal involves definition of viable software metrics and procedures
for their measurement. Gilb (Reference 20) addresses this question
in his book Software Metrics. Two approaches to measuring main-

tainability of computer programs have been reviewed for this
report.

2.4.1 Software Metrics Definition

As described by Walters and McCall in Reference 7 the defini-
tion of a set of software quality metrics ultimately leads to
a capability "for quantitatively specifying the level of quality
required in a software product". This approach was developed
as a result of a study of software quality factors. The purpose
of the study was to develop guidelines for objective software
quality specification in system requirements documentation.
The methodology presented in Reference 7 consists of the following
steps:

2-18

- YT L TERY 5

S

’-----"'-"-----.---.--..l-lIIIIlIIIIIIIIII--------r~—

) Determination of software quality factors whose com-
bined values will represent a quality rating.

® Identification of criteria to be used in rating each
quality factor.

) Definition of criteria metrics and a functional rela-
tionship among them for developing a quality factor
rating.

) Validation of metrics and functions using existing

software system historical data.

) Translation of study results into project management
guidelines.

The software quality factors identified for the study repre-
sent the most commonly accepted and desirable characteristics

of software. For application in this methodology they are grouped
into three sets representing their orientation toward the func-
tional areas of product revision, transition, and operation.

This facilitates expression of factor ratings in terms of user
interaction with the software product. The quality factors iden-
tified are maintainability, flexibility, testability, interopera-
bility, reusability, portability, correctness, reliability, ef-
ficiency, integrity, and usability., This discussion will focus

on the maintainability factor which is associated with product

revision.
Maintainability criteria are established through expansion

of the definition of maintainability into specific attributes
which can be objectively measured. Those criteria are consistency,

simplicity, modularity, self-descriptiveness, and conciseness.
Some of these criteria are also criteria for the reliability
quality factor. Shared criteria are used to describe factor inter-

:

relationships and occur between other quality factors. Once the
criteria are identified they are linked with specific software
life cycle phases both for application of criteria metrics and
for indication of when they will affect software quality.

T TTIITER T

Definition of criterion metrics is based on two considera-
tions; they must support quantitative measurement of the criterion !

2-19

and they must be accessible through available software infor-
mation. Two types of metrics are defined. One type is a value
measure with a given range of values and the other is a binary
measure of the existence or absence of some factor. Metric units
are carefully chosen and expressed as a "ratio of actual occur-
rences to the possible number of occurrences". The set of values
representing those metrics supporting the maintainability criteria
becomes the input domain of a normalization function which produces
the final maintainability rating. That function is derived by
applying the principles of statistical inference to the metric
values and establishing appropriate mathematical relationships
among the values. In the case of maintainability the final
quality rating is expressed in terms of the number of man-days
required to correct a software error. Development of that
function is to be accomplished as a result of further research

and experimentation.

Validation of the normalization function is accomplished
through an iterative process of comparing predicted quality
ratings with actual ratings. The authors state that with more
experience in applying these metrics and more data to support
further refinement of the functions, confidence in their use as
predictions of software gquality will grow.

2.4.2 Design by Objectives

In his paper on the subject of controlling software maintain-
ability, Gilb (Reference 21) asserts that maintainability can

be designed into programs and systems. He offers as a methodology
for accomplishing this a quantitative process whi¢h he has called

Design by Objectives (DbO). For those familiar with management !

i=
J

systems, DbO resembles Management By Objectives (MBO) in that
identification of gquantifiable and achievable goals are the focus
for both methodologies. Also like MBO, DbO offers a structured
and disciplined set of procedures for achieving the goal or goals. ;
DbO is based upon specification of software attributes that are

2-20

accessible and measurable. Manipulation of those attribute values
is accomplished through application of an integrated set of design
specification tools. DbO may be applied during the development
process to establish control of the attainment of any system
quality goals. The cited paper discusses only an application

of DbO to attain a desired degree of maintainability.

Creation of a DbO program begins with definition of a set
of design goals. The goals must be quantifiable particularly
at the subgoal level. The goals and subgoals form a system attri-
bute specification. This specification is documented in matrix
form using subgoals and descriptive parameters. The parameters
establish quantifiable levels of achievement for each subgoal.
These parameter or attribute values entered into the attribute/
subgoal matrix represent degrees of attainment of the subgoals.
Based on system characteristics and development requirements
the subgoals are subjectively prioritized.

Next a function/attribute table is created. A list of system
functions which are "of interest at some stage of design" and
are quantifiable in some form is identified. These functions
and the attributes from the system attribute specification are
entered in a matrix form which will be the functinn/attribute
table. The elements of this matrix contain symbols that reference
a coded description list of techniques. When the referenced
technique or techniques are applied the result should be that
the particular function will have a satisfactory amount of the
indicated attribute. In order to determine the total quality
of a function the attribute qualities must be summed. According
to the author the summing is intuitive at this point, but appli-
cation of certain engineering principles may offer a more dis-
ciplined procedure for this,

The DbO methodology is proposed as an engineering oriented
approach to achieving controlled quality levels in software.
Through implementation of the function/attribute table, goal

directed use of resources and techniques is realized and contri-
bution from the use of the techniques is quantified. DbO en-
courages a more disciplined examination of the software design
process. It offers the software developer a greater potential
for more efficient use of his resources in meeting design ob-
jectives.

SECTION III
SOFTWARE MAINTENANCE TECHNOLOGY

3.1 MAINTENANCE FUNCTIONS

As has been previously established, software maintenance
may be categorized as corrective, perfective or adaptive. These
bases of maintenance characterize the application of techniques
and tools and are an important element of their definition.
Whether the maintenance is corrective, adaptive or perfective,
commitment of resources is required. 1In order to develop a viable
maintenance program and a capability for committing those resources
in an effective manner, management must understand the require-
ments of software maintenance and how the available technology
supports those requirements.

Maintenance requirements may be expressed at the highest
level in terms of the functions performed in maintaining soft-
ware. An important part of this review of maintenance technology
was consideration of how that technology is applied to satisfy
maintenance requirements. Implicit in each technique or tool
description is consideration for how that technology item sup-
ports the maintenance functions.

Definition of the functions of maintenance is taken from
"Software Engineering" by Boehm (Reference 4) as follows:

o "Understanding the existing software: This implies
the need for good documentation, good traceability
between requirements and code and well-structured and
well-formatted code.”

o "Modifying the existing software: This implies the
need for software. hardware, and data structures which
are easy to expand and which minimize side effects
of changes, plus easy-to-update documentation."

) "Revalidating the modified software: This implies
the need for software structures which facilitate
selective retest, and aids for making retest more
thorough and efficient".

T

=y

B

7 Ry AN

YL

AT .

3.2 MAINTENANCE ACTIVITIES

Discussion of maintenance activities will focus on the opera-
tion and maintenance phase even though maintenance is not limited
to that phase. Maintenance during software development tends
to be unstructured and unrecorded. Current literature suggests
that delivered software is no longer viewed as a finished product
with correction and update considered exceptional tasks. Now,

a more realistic approach to operation and maintenance phase
requirements seems to prevail among users. That approach accepts
the delivered software as having attained an acceptable level

of operational performance, but realizes that a potential for
undiscovered operations flaws exists and that changing operational
requirements will force software updates. 1In short, all computer
systems, haidware and software, exist in an operational environ-
ment that is naturally dynamic. If systems cannot exhibit some
degree of structural and logical flexibility, then their oper-
ational utility will be limited and even their continued existence
will be in doubt. Users will demand systems that are more respon-
sive to their needs and more economical to maintain.

Operation and maintenance phase activities must support
all functions of maintenance. Understanding, modifying, and
revalidating computer programs involves activities that focus
both on the correction of existing code and the development of

new code or programs. For this reason it is appropriate to include

in this phase activities that are usually thought of as develop-
ment phase activities. 1In the correlation matrix that is pre-
sented in the following subparagraph these activities appear

as matrix elements. They are used to specify the particular
functional orientation of each technique or tool employed in

the operation and maintenance phase. Those activities are:

' Requirements Analysis
® System/Program Redesign
e Code Production

Y SR

Test and Integration
Documentation

Error Identification/Isolation
Quality Assurance

Configuration Management

Figure 3-1 illustrates the relationship between maintenance
functions and the above activities. 1In this figure activity
support of a function or functions is indicated by line(s) con-
necting the activity and the function(s). To emphasize that to-
gether, functions and activities are invoked by the causes and
choices which motivate software maintenance, the bases of soft-
ware maintenance are included in the lower portion of the fig-

ure.
ACTIVITIES
FUNCTIONS
REQUIREMENTS ERROR
IDENTIF 1CATION/
ANALYSIS UNDERSTANDING ¢
SOF TWARE ISOLATION
SYSTEM/PROGRAM
REDESIGN
QUALITY
ASSURANCE
CODE MODIFYING
PRODUCTION SOFTWARE
CONF 1GURAT ION
MANAGEMENT
TEST AND
INTEGRAT 10N
REVALIDATING
SOF TWARE
DOCUMENTAT ION
BASES
C Vi
aoerve T pepreenive

1-360-2061

Figure 3-1. Functions - Activities Hierarchy

3-3

N

= T

e

E £

#

X2

e -

A .

3.3 TECHNOLOGY/ACTIVITY MATRIX

As a preliminary step in the process of identifying and
describing software maintenance tools and techniques, a set of
maintenance technology functions has been defined. Each tech-
nology function, such as performance monitoring, static code
analysis, path flow analysis, and test data generation is sup-
ported by one or more maintenance tools and techniques. These
functions provide a logical link between the software maintenance
requirements for understanding, modifying and revalidating com-

puter programs and the description of how tools and techniques
satisfy those requirements.

Correlation of maintenance technology functions with mainte-
nance activities is depicted in Figure 3-2. The linkage between
technology and activity is further refined by indicating on the
correlation matrix the nature of the technology application in

terms of bases of software maintenance (corrective, adaptive
or perfective).

3.3.1 Maintenance Technology Categories

Maintenance technologies are grouped somewhat arbitrarily
by primary function in order to avoid repetition of the same
technology in several different categories. For example, static
code analysis is grouped with verification and validation tech-
niques but is also a valuable tool for redesign analysis. The
complete application of each technology can be determined by
reading across the matrix row for that technology. The specific

tools or techniques which utilize each maintenance technology

are shown in the Maintenance Tools and Techniques Applications
Matrix, Figure 4-1.

ey —— ————
o >

e

e
£8

i

cm——

AT IR AN P
WA ATE AAR . ? H
b a - 4 D o
ATyt i z - e = a o
PRSI Y 2 X s & 4 r
Toomn Y 2 s g . N i :
a “ v oow « >z
4 - & > o - - ¢ Z
e a < [P . Vo3 x
Yrw iy L e £,8,F R
re N L RATTON ot ALE B
YA e TN fLEE LR
DUORING EYACLATION
AMEN b OANALYSES TR [[OB,
Wi DATE ANALYSIS CALE
MAN_E MONITOEING W [N
A TOMATID RELOVERY VL AP AP
REDESIGN
REJ JREMENT . TETIAYINATOON ALt
RECEOTON ANALYSIS LA
LSV WS AU ' A,°
BiPK (v TION AND ANALYSES
STHL T RED PROGRAMMING AL
N N Lp
< [
N (L8, F A
¢
< CLhLP
: N
‘ W {6, F
: . [N C,a,P LA
. (ST C,AF (AP
: [
{ LR C,A,P oA
- Ler C,4,F0 N
([AP AP
LTI0N ¢ [T [
AP C.AF AP
: R CL AP AP (AR
SYnANT NG YL . (,A0 C,8,f
FYE L TION ANATTER L SOF AR ,er 8,0
a ARG VTR N C.AP
ANZ Y EE B (LB F TR P
NTre DR NN N
Tiwdoee N 0 BT s
TENTING AN
e a,rf [£
T [N
TEST e b felr TN Celr AP
TOMEETE N ARG YRR AF [
T B £ 14
Teer et ow (4P (LA,F
ATwato [
NPT P (,AF AT
TEST STATL! IRLF [
TEST BED ¢ CLA,F
Sim ATOR [AP AP
REGRESCION TESTING C,AF
T WENTATION
DOCLWENTATILN AT CALP CAP cAT
AUTIMETID D00 INTER AP [N LA

MINTENANTE RE ¢ AT

Figure 3-2.

LR LI R O I R TR A R | 1

Maintenance Technology/Activity Correlation Matrix

1

shaetl e

3.3.2 Maintenance Technology Definitions

3.3.2.1 Configuration Control

a. Support Libraries]
Libraries provide a constantly up-to-date representation

of the system's source and object code and a past history of coding
changes. Test data and test history may also be included. Li-
braries are useful in maintenance programming support by assuring
that the modifications are made to the proper version of a pro-
gram and by improving the visibility of the system for cross-
checking. They can also be used as a centralized data base for
such management functions as version control, test case mainte-
nance, and project reporting.

e e

Programs which implement support libraries are commercially
available and include Applied Data Research's LIBRARIAN and Inter-
national Business Machines' Program Production Library (PPL) (Ref-
erence 22).

b. Automatic Reconfiguration

Mt e 0 M A A S AN M| T30 eV T

This technology allows rapid reconfiguration, based on
stimuli from the run-time environment, of a software system to
reflect changes made to a number of its modules.

et

e

cC. Status Reporting

An adequate data reporting, repository and control
system provides the capability for project control by assuring
that the status of all problems, deficiencies, changes and con-
figuration data are reported to the responsible manager for anal-

P S N R i ol ST T]

ysis. These reports also assist in error isolation during the
maintenance phase by providing information concerning the latest

program change, such as date, time, statement numbers, perscn
responsible, etc.

e e AT

3.3.2.2 Operations Monitoring/Evaluation
a. Per formance Analysis

This technology assists the analyst in determining
existing systems performance characteristics for purposes of
improving the performance or assessing the effect of proposed
modifications. Performance analysis becomes necessary when a
system is too complex to be informally or analytically under-
standable (Reference 23). Performance evaluation is concerned
with the efficiency and effectiveness with which a computer sys-
tem may perform. Performance goals are generally stated in terms
of rates of work output, utilization of devices, or satisfaction
of restraint conditions.

b. Failure Data Analysis

Failure data analysis is a general category used to
designate technologies which measure or predict mean-time-between-
failures (MTBF) or mean-time~to failure (MTTF) or otherwise

quantify failure data for user analysis. The data is primarily
of interest to managers for maintenance scheduling and quality

assurance.
c. Performance Monitoring

Software monitors provide detailed statistics about

systems performance during production, including core usage,
queue lengths, program utilization, etc. The measurements can
be used in tuning existing programs and resolving resource con-

tention problems.

Hardware monitors obtain signals from the host computer
system through probes attached directly to the computer's cir-
cuitry. The data is reduced to provide information about CPU
utilization, channel activity, etc., which can be used to improve
program and system per formance.

Monitors can operate together or separately, either con-

tinuously or by sampling.

3-7

—— e~ T~

~ ——v——— —

d. Automatic Fault Recovery

This experimental technology addresses the identifica-
tion of logic faults as they occur during production runs and
attempts to recover from the fault without halting the run by
switching to backup files, using alternate program segments,
etc. If automatic recovery cannot be accomplished, the run may
be halted with appropriate diagnostic messages and the program
made available for interactive debugging.

3.3.2.3 Redesign
a. Requirements Determination

The requirements determination technologies included
in this report have been limited to technologies specifically
identified in the literature as applicable to the maintenance
phase. These technologies are usually directed toward the re-
quirements for system enhancements and functional changes but
they may also be needed to determine the requirements of the
existing system. For example, the first step in the Yau and
Collofello maintenance technique (Reference 12) is the decomposi-
tion of the existing system performance requirements into the
key performance attributes.

b. Redesign Analysis

This technology assists the analyst in understanding
the existing system, determining the portions of the system af-
fected by proposed modifications, and in choosing between alterna-
tive approaches to the redesign.

C. Pseudo-Code

Pseudo-Code, or program design language, is a "pigdin"
natural language with the syntax of a structured programming
language. Pseudo-Code permits the quick construction of a rough
outline of an entire problem solution, with more and more detail
being added as needed, and an orderly transition into the actual
programming language.

_—'———ﬂ

3.3.2.4 Code Production and Analysis
a. Structured Programming Aid

The general category "structured programming aid" is
listed separately for ready identification in the Tools and Tech-
niques Applications Matrix. The various types of aids are shown
in individual categories, such as, language preprocessors, stan-
dards enforcers and pseudo-code.

b. Formatter

An automatic formatter can be used to improve the reada-

bility of a program for maintenance purposes, to assist the pro-
grammer in debugging program changes, and to aid in the production
of documentation.

C. Preprocessor

A preprocessor is a computer program used to add capa-
bilities to a system without changing the existing compiler or
the system itself. Preprocessors which support structured con-

structs are a typical example.

Reifer (Reference 22) reports a list of well over 50
preprocessors used to extend FORTRAN for structured programming.
A few representative preprocessors are descri